Cross-language inlining on GPU through LLVM

Allen MacFarland, Jed Brown, Jeremy Thompson
August 14, 2025

Abstract

I introduce a method of inlining functions from an external programming language by individually ma-
nipulating the steps of LLVM compilation. Despite slightly slower compilations, it yields almost identical
runtime performance to single-language alternative compilation schemes. Intended for developers who wish
to integrate cross-language inlining into their own systems.

1 Introduction

I have been working on a C library called 1ibCEED, which provides an efficient framework for matrix-free
discretizations on CPU and GPU. This library requires users to write a small C function to define their math-
ematical operators; I changed this to allow users to write this function in Rust, and this paper will explain
how this compilation scheme works in enough detail for anyone wishing to do the same between any other
LLVM-based languages. While this frames why I needed to do this work, it is not the focus of this paper, which
should be applicable to anyone interested in GPU compilation. For a reference implementation of the method
described in this paper, please see the 1ibCEED source codel

Inlining is a type of compile-time optimization where
two functions can be combined into one (Figure 1). This
reduces function calls, which is especially important when
compiling to GPU targets, where function calls are incred- 4
ibly expensive. fn square(x: i32) -> 32 {

return x * X;

Typically, automatic inlining optimizations stay within }
language barriers, and it was generally accepted that cross-
language calls should not be done in very performance- // ...turn into one function after inlining
critical sections of code. However, thanks to in- fn calculate position(t: i32) -> i32 {
termediate representations (IR) of languages, it is return (¢ * t) + t - 5;
now possible to inline across language barriers which
have previously effectively blocked cross-language GPU
calls.

// Two functions before inlining...
fn calculate_position(t: i32) -> i32 {
return square(t) + t - 5;

}

Figure 1: A rust-style pseudocode example of in-
lining

IR was designed to be an intermediary step between languages and targets, such that not every language
needed to write a compiler to every target; Languages could simply compile to LLVM, the largest IR, where
they would get access to every target. However, this compiler design comes with a hidden benefit: it is possible
to combine languages through LLVM IR and optimize with knowledge of the entire codebase, including multiple
languages.

clang and clang++ are LLVM-based C and C++ compilers that are closely tied with development of the
LLVM IR. Rust is a modern programming language with an LLVM-based compiler rustc and package manager
cargo, where packages are organized as “crates”.

https://github.com/CEED/libCEED
https://clang.llvm.org/
https://www.rust-lang.org/

2 The Pipeline

cargo
Rust ————— LLVM 1
V<7 .
Ling
opt llc
LLVM ———— LLVM ——— GPU code
«“é
0{& m’lﬁo{s
& Ctt ———Lvm T W

clang

Figure 2: A diagram of the compilation scheme.

Our approach to compilation is to split the compilation into each of the traditional LLVM compilation steps
and add the Rust LLVM as though it were part of a regular single-language LTO compile; see Figure 2.

In other words, the Rust and C++ are individually compiled first to LLVM with their respective compilers,
then both of these LLVM files are linked with 11vm-1ink, optimized (including inlining) with opt, and finally
compiled to gpu code with 11c. This produces a .ptx file which can be fed directly into CUDA.

3 Potential Pitfalls and Limitations

When working on manual LLVM compilation systems like these, there are a number of problems that special
care must be taken to avoid. Three of them are described here

3.1 Generating Valid LLVM Output

Many programming languages that allow LLVM output only intended their LLVM outputs to be used for de-
bugging, and never considered that it could instead be routed into a compilation pipeline. This may lead to
unforeseen problems, depending on the programming language.

For example, in Rust, the well-documented --emit=11vm-ir API is not capable of emitting dependencies,
including core or std, at least one of which is required for compilation of almost anything. Instead, developers
must use the linker-plugin-1to rustflag and build-std nightly feature to generate a staticlib. Among
other things, this contains the LLVM bitcode, so it must be passed to 11vm-1link with the ignore-non-bitcode
flag.

3.2 LLVM Version Mismatches

New versions of LLVM are frequently released, and they are not backwards-compatible. This means that the
entire pipeline must run the same version of LLVM, including compilers for other languages. For example, Rust
nightly frequently updates their LLVM toolchain and maintains their own slightly modified branch, so the entire
1ibCEED pipeline depends on the Rust-provided LLVM tools.

Those who wish to implement this system with another programming language should take care to ensure
that the LLVM versions of all relevant tools match. Version mismatches do not trigger version mismatch
errors, and may appear to be an entirely unrelated error. Additionally, it is possible to get “lucky” with LLVM
versions and have LLVM generated in one version work in another. This is never recommended because small
configuration changes could break code in hard-to-trace ways.

While it would be convenient for LLVM to be a stable platform to target for cross-compilation, this is not
one of the goals of their project and is unlikely to change soon. Developers using LLVM in this way should be
aware that this is not the intended use of the LLVM tools.

3.3 Distro Support for new LLVM Versions

Many distros ship only an outdated version of LLVM, which can cause frustrations for users with incompatible
distros.

For example, Rust is typically installed with a standalone script that gets the latest version, regardless of
distro, and our build method relies on the nightly release channel of Rust; at the time of writing, Ubuntu LTS
only ships LLVM version 19, even though Rust uses LLVM version 20. Because we require the nightly release
channel for the build-std feature (and this is never expected to land in stable), and it’s not reasonable to use
an older version of Rust nightly, our solution is effectively limited to bleeding-edge distros.

4 Performance

In 1ibCEED, GPU compilation is done Just-in-Time (JiT), so the cost of compilation is included in the cost of
runtime execution. It can be compared to a reference implementation with the proprietary nvrtc compiler and
to a single-language variant of the clang compile process

Performance of LibCEED benchmark by language and build
process

libCEED/examples/ceed/ex1-volume on AMD EPYC 7452/NVIDIA A30

45

40 -

35 —— e e e e ey

30 BN gy == NVRTC/C++
25 [=== Clang/C++

20 ——“M“‘mﬁﬂi” Clang/Rust/C++
15- T aogaa
10 . =

5
0 rrrrrrrrrrrrrrrrrrrrrorrrrrrrr1rr1rr1rrrrrrrrrririd

O B S O O SO OSSP
SN) I I G A S

Execution time (seconds) (lower is better)

Problem Difficulty (millions of unknowns)

Figure 3: A performance benchmark comparing the new compile and execution time of the new compilation
scheme relative to 2 possible controls: a single-language compilation scheme with the same compiler, and the
proprietary nvrtc

As shown in Figure 3, clang takes longer to compile, but this is only an O(1) cost, so as the problem size
increases, the relative gap between all implementations decreases.

5 Conclusion

Combining languages with LLVM is a promising new compilation technique, especially on GPU targets, where
inlining is essential.

The process described here for inlining Rust device functions into C++ kernels should be roughly applicable
to inlining between any two LLVM-based languages. Further work could be done on implementing such inte-
grations.

Further work could also be done on improving the pain points described in section 3 on the LLVM side.
Improving LLVM error messages or committing to a more stable IR could significantly simplify development of
many integrations.

6 Acknowledgments

This work was funded by the United States Department of Energy
e [PSAAP - Predictive Science Academic Alliance Program
e [SciDAC - Scientific Discovery through Advanced Computing
e Exascale computing project

This work was completed by an undergraduate researcher funded by the SPUR program of the University of
Colorado Boulder, funded by the [Engineering Excellence Fund

References

[03] LLVM. https://1lvm.org/. 2003. URL: https://11lvm.org/.

[LAO4] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program Analysis
and Transformation”. In: San Jose, CA, USA, Mar. 2004, pp. 75-88.

[07] Clang. https://clang.11lvm.org/. 2007. URL: https://clang.llvm.org/.
[15] The Rust Programming Language. https://www.rust-lang.org/. 2015. URL: https://www.rust-
lang.org/.

[Bro+21] Jed Brown et al. “libCEED: Fast algebra for high-order element-based discretizations”. In: Journal
of Open Source Software 6.63 (2021), p. 2945. DOIL: |[10.21105/joss . 02945.

[21] libCEED development site. https://github.com/ceed/1libceed. 2021. URL: https://github.
com/ceed/libceed.

https://psaap.llnl.gov/
https://scidac.gov/
https://www.exascaleproject.org/
https://www.colorado.edu/engineering/students/research-opportunities/summer-program-undergraduate-research-cu-spur
https://www.colorado.edu/program/eef/
https://llvm.org/
https://llvm.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doi.org/10.21105/joss.02945
https://github.com/ceed/libceed
https://github.com/ceed/libceed
https://github.com/ceed/libceed

	Introduction
	The Pipeline
	Potential Pitfalls and Limitations
	Generating Valid LLVM Output
	LLVM Version Mismatches
	Distro Support for new LLVM Versions

	Performance
	Conclusion
	Acknowledgments

